
Cloud Environment Manager
Final Report

Members:
Adis Osmankic

Zane Seuser
Jet Jacobs

Rishabh Bansal
Gavin Monroe

Team Number: sdmay21-39
Client: PwC

Adviser: Lotfi Ben Othmane
Team Email: sdmay21-39@iastate.edu

Website: https://sdmay21-39.sd.ece.iastate.edu
Last Revised: April, 2021

mailto:sdmay21-39@iastate.edu

Executive Summary

Development Standards & Practices Used
● Development Standards

○ IEEE 14764-2006 - Standard for Software Engineering - Software Life
Cycle Processes - Maintenance

■ This standard explains the life cycle processes of software. This
standard provides guidance that applies to planning, execution and
control, review and evaluation, and closure of the Maintenance
Process.This is where our CI/CD and DevOps practices come into
play.

○ IEEE 29119-1:2013 - Software and Systems Engineering — Software
Testing

■ This standard is to define an internationally-agreed set of standards
for software testing that can be used by any organization when
performing any form of software testing.

○ IEEE 15026-1:2019 - Systems and Software Assurance
■ This standard goes over software assurances. We are specifically

following part three of this standard which goes over the integrity of
a given piece of software. We consider the CIA triad of
confidentiality, integrity, and availability of our application with great
importance and following this standard is a critical step to achieving
this.

● Practices Used
○ Agile Development
○ Cloud IAC (Infrastructure As Code)
○ Code Developed with Modularity
○ Well-Documented Code
○ REST
○ OWASP ASVS

Summary of Requirements
● Easily create & manage lab environments on multiple cloud platforms
● Intuitive interface to manage and create lab environments

Applicable Courses from Iowa State University Curriculum
● COM S 309 (Software Development Practices)
● COM S 319 (Construction of User Interfaces)
● COM S 362 (Object-Oriented Analysis & Design)
● COM S 363 (Database Systems)
● SE 329 (Software Project Management)
● SE 339 (Software Architecture & Design)

New Skills/Knowledge Acquired That Was Not Taught In Courses
● Knowledge Of Different Cloud Providers
● Knowledge Of Infrastructure As Code
● React Development
● Python Development
● Ansible Implementations

Table of Contents
Executive Summary 2

Table of Contents 4

1 Introduction 5
1.1 Acknowledgement 5
1.2 Problem and Project Statement 5
1.3 Reader Context 5
1.4 Operational Environment 5
1.5 Requirements 6
1.6 Intended Users and Uses 6
1.7 Assumptions and Limitations 6
1.8 Expected End Product and Deliverables 7
1.9 Related Works 7

2 Design & Implementation 7
2.1 Engineering Constraints 7
2.2 Design Thinking 8
2.3 Technology Decisions 14
2.4 Design Components 16
2.5 Design Implementation 18
2.6 Design Evolution (From SE491) 21
2.7 Security Concerns & Countermeasures 22

3 Testing 24
3.1 Unit Testing 24
3.2 Integration/Interface Testing 24
3.3 Acceptance Testing 25

4 Appendices 27
Appendix I: Operation Manual 27

4.1 Setting Up Production 27
4.2 Using the Web Application 28

Appendix II: Alternative / Other Initial Versions of Design 32
Appendix III: Other Considerations 34
Appendix IV: API Documentation 36

1 Introduction
1.1 Acknowledgement

Thank you to our client PwC for the technical support and architectural guidance.
We would also like to thank Lotfi Ben Othmane, our advisor for this project, for
helping us through the planning and development process.

1.2 Problem and Project Statement
Currently, our sponsor provides lab environments for a variety of reasons such as
capture the flag events or to test different tool sets in a simulated environment on
a variety of cloud providers manually. The problem they have is that this method
is unscalable and it is difficult to recreate these environments, especially on
different platforms. They currently have no way to quickly create and manage a
large amount of lab environments in a consistent and reliable way.

By developing our project application, the Cloud Environment Manager, we are
going to create an open source application that our sponsor and others with
similar problems can utilize. We will provide an application that contains a clean
and simple user interface that allows them to quickly and easily deploy labs and
manage environments on multiple cloud providers.

To summarize, our whole project is to create an user friendly interface that can
quickly and easily create and manage virtual machines and their networks in
various cloud platforms.

1.3 Reader Context
Throughout this document we will refer to “labs” or “lab environments”. In the
context of the Cloud Environment Manager application, a lab or lab environment
is a group of one or more virtual machines that are hosted within a cloud
provider. Any software can be installed on these machines, but our sponsor’s use
case is to host capture the flag training events, create testing environments, or to
demonstrate new technologies.

1.4 Operational Environment
This main application will be hosted on a client’s server. The front-end application
will be accessible from a web browser and the back-end API it interfaces with will

be able to deploy lab environments to different cloud providers (AWS, Azure,
GCP).

1.5 Requirements
● Functional Requirements

○ A user should be able to view a list of existing lab environments
○ A user should be able to view all of the attributes of existing lab

environments
○ A user should be able to provision lab environments within AWS, GCP,

and Azure
○ A user should be able to destroy existing lab environments within AWS,

GCP, and Azure
○ A user should be able to deploy the same lab environment on any platform

● Non-Functional Requirements
○ The application should be available at all times
○ The application should properly handle errors behind-the-scenes and

provide error messages / warnings to the user when necessary
○ The user interface should be visually appealing
○ The user interface should be easy to use and intuitive

1.6 Intended Users and Uses
This project is designed for use by an organization that needs to deploy lab
environments to different cloud platforms for a variety of different users. This
project is focused on deploying test environments to mainly be used for
education and capture the flag events for organizations or individuals that require
to create these platforms often and consistently. By using this product,
organization admins will be able to deliver training resources to members of the
organization quickly and easily.

1.7 Assumptions and Limitations
● Assumptions

○ The organization has access to AWS, Azure, and GCP cloud platforms
and can provide service account credentials with permissions to manage
networks, volumes, and virtual machines.

○ The organization or individual has the resources to host the user interface
and back-end with their own login service

○ The organization can configure the lab environments to accept
programmatic access to the virtual machine resources in the cloud

● Limitations
○ There are some configurations that need to be manually changed by an

organization
○ Only administrators can set up the application

1.8 Expected End Product and Deliverables
● Hosted Cloud Environment Manager Application And Source Code
● Project Documentation
● May 2021 Hand-Off

1.9 Related Works
There are related works to this product in the sense of monitoring and controlling
virtual machines in individual platforms, but none that are able to manage
multiple platforms and allow for cross platform deployments. Similar products,
such as Terraform, focus on creating deployments from a given script and are
able to create deployments on multiple platforms, but is not a user friendly tool as
the user will need to create and manage scripts while running these scripts on
some device. Other related works, such as Spot Cloud Analyzer and Nutanix
beam, are capable of analyzing deployments on multiple cloud platforms in a
user friendly way, but focus more on monitoring the platforms rather than
deploying to these platforms in a modular and consistent manner. These works
also do not have free models and are missing key requirements for the users we
are trying to serve, while the Cloud Environment Manager is open source and
focuses on deploying modular environments to separate cloud environments.

2 Design & Implementation
2.1 Engineering Constraints

● Minimal Constraints Applied From Sponsor
PwC gave us a ton of flexibility on this project in regards to which
technologies to implement the application with. The main “constraint” they
provided to us was more of a recommendation, and that was to make use
of Ansible for Infrastructure As Code (IAC) as our cloud orchestrator.

● No Monetary Resources
Our team was not given access to any monetary resources to complete
this project. This is not a major issue as we could make use of our
ISU-provided virtual machine for hosting as well as the free levels of the
various cloud providers, but this did prevent testing scalability and testing
more complex environments.

● Time
As with all senior design projects, we are strictly held to an application
design and development time-frame of 2 semesters.

● Cross-Compatibility
The whole idea of our project being able to work across multiple cloud
provider platforms is perhaps the most important engineering constraint
and guide post. The templates for the labs must be able to be deployed
across all of the supported cloud platforms.

2.2 Design Thinking
A major requirement for our product is that it needs to be intuitive for the user to
utilize and powerful and modular enough to perform multiple deployments across
multiple platforms. The product needs to be able to take information from the
user and use it to deploy environments. This ultimately led us to deciding to
develop a full stack web application. To develop this application, we would need
several components that all work in conjunction with one another. The basic
components of this application would be a front-end, a back-end, and a cloud
orchestrator all utilizing a concept of templates to operate as seen in Figure
2.2.1.

● Front-end
To make the service accessible to the user in an intuitive way, we decided that
we needed a front-end that is separate from the complex logic and processing
necessary for the product. This could be done through several different means
such as a command line interface or through a pipeline that is hosted on some
platform, but we ultimately decided to develop a graphical user interface that is
hosted on the web. This allowed for the user to easily and intuitively view and
manage information while allowing us to format requests into a format that could
be interpreted properly by our service. Being hosted on the web also allowed for
greater availability for the user as it would allow the user to access the
application from anywhere on a given network.

● Back-end
Since our service will be hosted separately from our user interface, we needed to
have a component that could handle requests from the front-end, perform
complex operations, and communicate with our cloud orchestrator. We
considered performing this on a pipeline that could be kicked from the front-end,
but ultimately decided against this due to the limited resources we were offered
and the limited modularity of a pipeline given our use cases. We then decided to
host a separate application to perform these operations. Since the front-end
needed to interface with this service, we decided to expose an API on this
service to interface with the user interface. This back-end then would need to be
structured enough to take in specific input from the user interface, yet dynamic
enough to turn that input into operations to provision lab environments. With this
in mind, we needed to create components within this service that would handle
each type of request for each given platform.

Since we figured we would likely have to store information about how to deploy to
specific accounts and information on deployed instances, we decided we needed
to implement some storage mechanism. Initially, we decided to go for a
filesystem store that would contain configuration information along with a file to
store information on deployed instances, but to improve efficiency and to allow
for easy modification of data, we decided to go with a database to host this
information.

● Cloud Orchestrator
By this point, we already have a service planned out that can perform logic and
data processing with a user interface that allows the user to make requests to
perform separate use cases, but the service still needs to communicate with the

cloud. There were many options on how to perform these actions, such as
utilizing each cloud platform's command line interface, utilizing each platform's
SDK/API, or utilizing some third-party automation software. We decided to go
with the latter since we found that creating libraries for our back-end to use each
cloud platform would be cumbersome and overly complex while attempting to
programmatically use a command line interface introduces extra unnecessary
complexities. Utilizing third-party software would allow for consistent data to be
used for each platform and would be quicker to implement, which is critical given
the time constraint.

● Template
Since a major requirement of this project is to develop code that is modular, we
needed to create a way that would allow for a user to create an environment that
contained basic information, such as network information, images of given
machines, and volume information of those machines all of which would create a
“lab” or “lab environment.” Since each platform varied greatly, we needed to find
a way to keep this information generic enough to parse and create these lab
environments on different platforms.

Initially we were thinking of specifying this information on deployment requests,
but figured that the user may want to store this information and redeploy another
instance of this lab, even potentially on another platform, so we decided to create
the concept of a template. The user would be allowed to create a template by
providing basic information, such as a list of images for machines to be deployed
in a single environment and what those machines can access, then we would
turn this information into a generic, parseable collection of information and store
it in some data store. The user could then reference this template during
deployment giving consistent deployments of the same lab no matter the
platform. Since some cloud platforms contain options that are platform specific,
such as AWS security groups or Azure resource groups, we decided that during
deployment, the user must supply a template, but the user should also be given a
list of optional, platform specific configurations they could modify during
deployment.

● Use Cases
To help illustrate the flow of how this design would work, we will go over several
use cases.

User wants to create a new lab environment template
Due to the nature of our product, the user will need to create custom lab
environments and save them to be referenced later. To accomplish this, a page
on the user interface will be created that requests information from the user
about the new lab environment. This information will be structured in such a way
that it can be deployed to any platform needed by the end user. We utilize a
“template” to structure this data and save it for later referencing. The template is
a generic JSON object that contains fields such as what the name of this
template should be, what machine images should be used, and what connectivity
the machine should have (can it access other machines in its environment, can it

access the internet, can it be exposed to the internet). The user data is
transformed into a template and sent to the back-end using a POST request to
an exposed API. The back-end then validates the data and if the template is
valid, stores it in a mongo database, otherwise responds with an error. An
illustration of this can be seen in Figure 2.2.2.

Flow diagrams for each use case will be similar to the above with different API
logic.

User wants to deploy a saved lab environment
In order for a user to deploy an environment, they had to have created a template
first. To deploy an environment, the user must specify the platform they want to
deploy to and additional platform specific information. Once the user selects a
template and a platform, the request is converted to a JSON format and sent to
the back-end via an exposed POST API. The API then validates and sanitizes

the request and parses the data to perform whatever deployment actions are
necessary to have the lab deployed to a given platform. The deployed lab
information is then stored in a database that is used to track all deployments.

User wants to view all deployed lab environments
If the user wishes to view all lab environments and their status, they navigate to
the deployed labs page which sends a GET request to an exposed API on our
back-end service. The back-end Service then queries a deployment database
that contains information on all deployed labs and queries all cloud platforms to
get all running machines. The back-end then uses the information from the
deployment database to filter the information gathered from all cloud platforms
and group the individual machines into corresponding lab environments. This
information is then sent back to the client to be displayed in an intuitive way.

User wants to modify state of lab environments
For the user to modify the state of a lab (on/off/restart/terminate) they must view
all deployed lab environments, select the lab environment they wish to modify
and select either individual machines to modify or the entire environment. They
will then confirm their choice and send a PUT request to the exposed API on the
back-end service with all machines they wish to modify along with their choice of
modification (on/off/restart/terminate) and the service will make the appropriate
calls to modify the state of a machine on each given platform.

User wants to view all templates
For the user to view all the saved templates, they must either view the templates
page or the deploy lab page. Either page will make a GET request to the
exposed API on the back-end service and retrieve all the templates from the
template database. The UI will then display the templates to the end user.

User wants to remove a template
For the user to delete a saved template, they must view the templates page and
select the template they wish to remove. After confirming their choice, the
interface will send a DELETE request to the exposed API on the back-end
service. The back-end will then verify the request and delete the template from
the database.

2.3 Technology Decisions
● Hosting

The Iowa State virtual machines were used as the infrastructure that hosts
our user interface, Flask API, Ansible nodes, and our MongoDB database
during the development of the application. Initially we were planning to
host this on AWS to utilize many of the great resources on AWS, such as
CodePipeline and API Gateway, but given that we had no budget, we
decided to utilize the resources given to us and host on Iowa State’s
servers. On the virtual server provisioned for use, we utilize Docker to host
each component and utilize docker compose to allow for each component
to communicate with one another.

● User Interface (UI) Framework
We decided that the best way for a user to interact with our service would
be through a graphical web user interface. To implement this, we utilized
React, a Javascript library for building user interfaces, to build the Cloud
Environment Manager’s user interface. We chose to go this route because
React allowed us to build a highly functional and dynamic UI extremely
quickly while also being a framework that was familiar with a majority of
the team. The componentization aspect of React and all of the external
libraries that can be easily imported into a React allowed us to quickly
develop an interface within the strict time constraint while also giving us
flexibility to work with our API. We considered developing a basic
HTML/JS web front-end, but we figured that React had many libraries to
simplify how we create our user interface.

● API Framework
To access and control our service, we needed to have some interface that
could be accessed by the outside world. We decided to implement an API
to account for this and we decided to utilize Flask, a Python API
framework, to accomplish our API for this project. We chose to use Flask,
because it allowed for us to get an API running in a timely manner, and
allowed us to use any package that is available to Python via pip. Having
access to the Python libraries is extremely important for the Cloud
Environment Manager application, because there are a multitude of
libraries that exist and they allow us to interact with all the major cloud
providers, Ansible, MongoDB, and various other useful utilities. We also
considered utilizing other languages and frameworks, such as express.js
to serve as our API, but given that our cloud orchestrator tool only offered

a python interface and we were all familiar with python and Flask, we
ultimately decided to utilize Flask.

● Database Technology
The database technology of choice for this project was MongoDB. We
chose to go this route because of the NoSQL flexibility. Additionally, the
back-end framework, Python Flask integrates very nicely with it.

● Cloud Orchestrator
Ansible, specifically the Ansible Playbooks, is the technology that we are
utilizing for the IAC aspect of the Cloud Environment Manager application.
We chose this route because Ansible integrates with all of the major cloud
providers that we support relatively easily. Additionally, our sponsor
nudged us to use this technology during our initial design conversations
with them. An important driving factor in our design is that it is supposed to
be open source and modular. Utilizing playbooks allows for a user to
quickly add or modify functionality for the application without any major
programming, making it a clear choice for this application. We were
looking into other orchestrator tools such as Chef and Puppet, but we
found that they required a more complex setup and required purchasing
their tool, unlike ansible that fit our budget of free.

2.4 Design Components
The overall design of our product can be summarized as 5 major components as
seen in Figure 2.4.1 and 2.4.2.

User Interface (React Web Portal):
A React application was created for our project’s user interface. This application
presents users with the ability to define new lab templates, provision labs into
various cloud providers with said templates, and view and destroy existing lab
environments that were previously created. All of this data and functionality is
available to our React application via the API.

API (Python REST Service):
A Python Flask API has been created to be the connection to all of our back-end
services and provide all the functionality to our React front-end. Depending on
what a specific route or path is doing, it interfaces with Ansible or MongoDB.
Additionally, Flask makes it super easy to import all the various libraries needed,
sanitize API requests, and provide usable API responses.

Ansible (Playbooks):
Ansible is utilized within the Cloud Environment Manager application to do the
actual interfacing with the various cloud providers. In short, the Ansible
Playbooks that we have written are able to use our encrypted cloud provider
credentials to retrieve information about existing labs, provision new labs, and
de-provision existing labs. These actions can be done on Amazon Web Services,
Microsoft Azure, and Google Cloud Provider.

MongoDB (Database):
MongoDB is the chosen database technology for this project. We utilized it to
store our re-usable lab templates, deployed lab environments, and various
configuration parameters.

Cloud Infrastructure (Labs / Virtual Machines):
We are giving users the ability to create labs within various different cloud
providers such as AWS, GCP, and Azure. A lab is created with the user-selected
template, and placed into a network on the selected cloud provider that makes it
accessible to those trying to utilize the lab.

2.5 Design Implementation
Front-end
For our front-end, we utilized the react framework to create a high functioning
graphical user interface. We created several components within our React project
that all attempt to handle each use case of our application. To accomplish this,
we utilize the React Redux for our state bindings, React Router to handle our
routes, and React Bootstrap to handle our webpage formatting. To account for
our use cases, our front-end contains three routes. A home route that displays
generic information, a manage route to handle all requests to create and manage
templates and to deploy any environments on any selected cloud platform, and a
status route to display the statuses of deployed labs.

To receive templates and deployed labs, we make a fetch request to our API to
collect an array of templates and deployed labs respectively (in addition to other
information like subnets). To display this to the user, we utilize the react table
package to organize this information into a table that sorts the information into
easy to read rows. To modify or delete a template or lab, we request the user to
select the template or lab from their respective row and press the modify or

delete button to send a put and delete request to our API respectively. To then
deploy a template to a cloud platform, we request the user select a template,
then request them to input some optional data related to the platform that they
must select, such as select a subnet ID from a list of IDs associated with a given
platform that are received from the API or “create one for me.” The user then
submits this information and the front-end creates a post request to the API by
placing the provided information in the request body.

Back-end
For our back-end, we implemented our design by utilizing the python flask
framework. Within flask, we created a controller for receiving requests from the
web application by exposing the application to the internet and had the control
route to 5 main services. An AWS service that handles the the creation and
management of AWS lab deployments, an Azure service that handles the
creation and management of our Azure based lab environment deployments, a
GCP service that handles the creation and management of the GCP lab
deployments, an auth service to handle authentication of the API, and a
mongoDB service to handle the retrieval and modification of saved lab
deployments and templates. We also have an ansible service to run our ansible
playbooks and a utility service to handle some general sanitization and
validation.

We utilize the pymongo python library to connect to our flask API to our mongo
database and we utilize the python library ansible runner to execute our ansible
playbooks. We utilize the PyJWT library to help manage our authentication by
requiring an authentication token for each request and generating the token for
the requests.

The general flow of our API is that it first receives a request and our
authentication service validates that the request is authenticated. If it is validated,
the request sanitizes all input and begins to parse the request. If, for example,
the user requests to deploy an environment to AWS, the request will contain a
template ID on information on customization options, such as whether to create a
subnet or not. The API will receive the template from the template mongo
collection and use the information from that template and the request to gather
information to deploy the virtual machines in the template. The back-end will then
attempt to deploy each of those machines, along with the subnet if specified by
calling the ansible runner. If the deployment is successful, it stores the
information into the database. This flow is similar to every route but utilizing

different functions to achieve functionality after the request has been validated
and sanitized. To view all API routes, see Appendix IV.

MongoDB
For our mongo database, we implemented our design by creating 3 collections, a
configuration collection for storing our account information, a deployment
collection for storing information on the deployed labs, and a template database
for storing information on the template.

Overall implementation
Each component is separate from one another, but they utilize HTTP traffic to
communicate with each other. Each component is hosted on its own docker
container and they communicate with one another by a specified port. The
front-end is hosted on a container with a public facing port (80) such that any
user on the network can access it from their web browser. The back-end is
hosted on a container also with a public facing port (5000). This needed to be
public in order for the front-end to be able to communicate with it. Since the
mongoDB will only ever communicate with the back-end, it is hosted on a
container that is only exposed to the docker host and can be routed to the
back-end service. An example communication of one of our use cases can be
seen in Figure 2.5.1.

2.6 Design Evolution (From SE491)
The initial design that we considered implementing was a React front-end
user-interface hosted on AWS S3 interfacing with an AWS API Gateway that was
integrated with AWS Lambda functions for the back-end API.

There were 3 main reasons we didn’t go this route. These reasons were, in short,
more familiarity, increased simplicity, and host-independence.

The first reason is that not everyone on the team was familiar with the various
AWS services that would have been required. This project was already on a
steep learning curve, and since we had our ISU-provided virtual machine
available to us, it just made more sense to go that route.

Second, architecting and developing an API with API Gateway and AWS
Lambda(s) is pretty simple, but involved. Various AWS Lambdas would have
been required, and, in a Flask API, all we need to do is add another route to the
code to in order provide another API service (versus writing & provisioning
another Lambda). Simplicity and ease of development was very important to us,
and so, again, it made more sense to host our Flask API on our virtual machine.

The final reason is that we wanted our sponsor to be able to host the Cloud
Environment Manager application anywhere, and not just on AWS. Using AWS
S3, AWS API Gateway and AWS Lambda would have made that impossible as,
obviously, the application would have been completely tied to the AWS cloud
provider.

2.7 Security Concerns & Countermeasures
There are really 3 main components of the design that we had to ensure were
secure. These components are the UI, the API, and the cloud providers.
Protection of these 3 components was crucial, otherwise it would be very easy to
run up an unintended and extremely large bill on all the connected cloud
providers by creating endless amounts of heavily-specced labs, create major
privacy issues by exposing user information, or create potential information
exposure of sensitive information by exposing cloud configurations or structures.

For the development process, the user interface is hosted within the ISU
network, which is important as the rest of the internet does not have access to
the Cloud Environment Manager application. Since the project is planned to be
open source, we expect the user to put some emphasis on security by hosting
this software in a controlled network and by offering certificates for https traffic,
aswell. If they wanted to expand the application and add additional security, then
they could take the time to add an Identity and Access Management layer on top
of the application to further protect from users they don’t want to have access.

Since the front-end generates output based on input received from the server, we
sanitize the input that is received from any API call to assure that in the case of a
malicious user being able to fabricate an API request/response, the user
interface cannot render anything harmful and cannot be redirected to another
site. We also planned to add the capabilities to have a cross site request forgery
token to help prevent cross site forgery attacks.

During the development, the API and the services it provides are protected again
by the ISU network and additionally by a static access key which must be present
in all requests, so again it is up to the user to host this application in a secured
network. If given more time, we would implement a login system using JWT
tokens to access both the front-end and back-end. It is up to the user to decide
whether to implement this or implement some type of API gateway to protect this
API.

Since we have a database that we are interacting with and we are using a runner
that executes commands on the host, we perform validation and sanitization of
all inputs to the back-end. We do this by escaping potentially malicious strings
that would be placed in the database and confirming that the input that will be
used to run is sanitized and conforms to the general format of what is expected
to be executed. To also assure that all functionality is as expected, we log many
of the functions of the API and serve this to the user so that they may implement
monitoring of these logs.

The cloud providers that we are integrating with have credentials that give
access to them stored on our ISU-provided virtual machine. These credentials
are used by our Flask API and Ansible Playbooks to retrieve, provision, and
de-provision resources within the cloud providers. We are protecting these
credentials by encrypting them within an Ansible Vault and giving only the
account associated with our service access to it. This prevents credentials from
being exposed to unnecessary actors.

Since this is a web application, we followed OWASP’s security guidelines for
securing a web application during development, including preventing the OWASP
top 10. The above information addresses how we prevent several of these
vulnerabilities and why it is important to consider them in a web application.

3 Testing
3.1 Unit Testing

Testing
During the course of the semester this was under utilized in favor of the other
testing. Largely the components we were building were either to display received
data, or to retrieve the same data. Because of this it is highly state based when
testing, which made this much higher effort than the value we would get out of it.
Since this was shifted away from, we changed to testing logical components
interfaces rather than effects.

3.2 Integration/Interface Testing
Interface Testing
It is important for each of our web facing APIs to be well tested and well defined.
For this project we have a good procedure for testing both our web server, as
well as the engine endpoints.
To do so each interface has been appropriately tested along all routes, and
operations. To do this we used a REST service test utility(hoppscotch.io or
postman). From here we insured the functionality of each interface as a whole
unit.

Interface List
● Front end server web interface
● Back end server REST API

We were able to establish dummy routes to test functionality of the front-ends
requests. This is to ensure that the front-end is sending valid requests in
response to a given action.

Integration Testing
For this we have utilized the tools from the interface testing plan, but now
tracking effects across the environment.
Additionally we recruited a targeted form of blitz testing to hit an integrated
environment prior to moving into the well defined stage of acceptance testing.

3.3 Acceptance Testing
Acceptance Testing is the final stage of testing and was used after the unit and
integration testing. The entire application should be fully developed and should
be able to function as expected. When working on the acceptance tests, we
made sure that assumptions and the constraints were considered ahead of the
time. For instance, the execution of a certain use case of the application can be
affected by different operating systems and web-browsers; the acceptance tests
were performed on each operating system and web browser that would be
specified ahead of time. An example of the acceptance testing: if the user would
be successfully able to select/design template by following steps:

Create Template Acceptance Testing:
Need 1: User is able to add the template by doing the following:

1. By creating a new template
2. Navigating to the Create Template Page
3. Filling out the template creation form
4. Submit the template creation form

Acceptance Criteria:
● The user was able to successfully create the template.
● The template shows in the templates list.

Delete Template Acceptance Testing:
Need 1: User is able to remove selected template by doing the following:

1. Selecting a template from templates list
2. Selecting the “Delete Template” button
3. Selecting the “Confirm Delete” button

Acceptance Criteria:
● The template is removed from the templates list.

Deploy Template Acceptance Testing:
Need 1: User is able to deploy a lab by doing:

1. Selecting a template from templates list
2. Selecting the “Deploy Environment” button
3. Filling out the form with appropriate data
4. Selecting Confirm Deploy button

Acceptance Criteria:
● The lab appears in labs list

● The instance is created inline with the selected values, and values in the
template.

More Info Acceptance Testing:
Need 1: User is able view more info on about a lab by doing the following:

1. Selecting the lab from labs list
2. Selecting the “More Info” Button

Acceptance Criteria:
● The user was able to see a json (may have some delay).
● The json reflect lab status

End Lab Acceptance Testing:
Need 1: User is able to terminate a lab by doing the following:

1. Selecting a lab from the lab list
2. Selecting the “End Environment” button
3. Selecting the “Confirm End” button

Acceptance Criteria:
● The lab is removed from lab list
● The lab ended in whatever cloud platform it was deployed.

4 Appendices

Appendix I: Operation Manual

4.1 Setting Up Production

The installation of this application requires a linux machine with docker installed
and sudo access.

To install the application, navigate to the git repository:
https://github.com/AOsmankic/sdmay21-39 and download the repository to some
temporary working directory on the linux machine. From there, you must collect
credentials from each cloud provider and add them to the security_keys directory
that was downloaded from the repository. To create and gather the credentials for
each platform, follow the following steps:

For AWS, log into your AWS console, access the IAM service, and select user.
From there you will add a user and set its access type to programmatic. Then
attach the EC2FullAccess policy (or select specific EC2 policies to fine grain
security access) and finish the creation process. You will be able to generate an
access and secret key for the user and save it to file named aws_keys.yml in the
format of:

aws_access_key: {access_key}
aws_secret_key: {secret_key}

Save this file into the security_keys folder in the root of the project.

For GCP, access your GCP console and create a service account by accessing
the IAM manager and selecting Service Accounts. From there, you must create a
new service account by giving it some meaningful name and ID. Add the
compute admin role to the service account and finish the account creation. Then
you must access this account and generate a new key by selecting keys -> add
keys and selecting JSON. This will download a json credentials file that must be
stored in that credentials folder.

For Azure, log into your azure portal and collect the subscription and tenant id for
the account and follow this guide,
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-ser

https://github.com/AOsmankic/sdmay21-39
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal

vice-principal-portal, to create a client and secret id. Collect all this information
and save this in a file named azure_keys.yml in the format of:

client_id: {your client id}
secret: {your secret}
tenant_id: {your tenant id}
subscription_id: {your subscription id}

Save this to the security_keys folder as well.

After collecting and storing all the credentials, run the installation script located in
the root directory. For usage help, run ./install.sh -h. After following the above
steps, run sudo ./install.sh -i to begin the installation process. After the install
script has completed, the web interface will be exposed to port 80 of the local
machine and the API will be exposed to port 5000. It is up to the user how they
want to expose these services to the network.

4.2 Using the Web Application

In a browser navigate to whatever url the web server can be accessed by (this
will vary based on the setup)
The web app is intuitive for the user and most of the fields are labeled such that if
you were familiar with the platform you are deploying to you would be able to fill
the form correctly.

Manage Templates Pages:

https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal

Figure 4.2.1 shows the page where template actions stem from. Start by
selecting the create template from the nav bar on the left.

Creating a template:
Fill out the form with appropriate data. The creation page is seen in Figure
4.2.2. Take note you are configuring one machine at a time and are only
adding that machine to the template if you select the add lab button. Take
note of the “Config Lab 1” text in blue as this shows what machine, and
how many you have added to the lab.
The images currently need to be specifically the platform you will deploy
to.

Adding a volume to the lab:
During lab creation you may need to add an extra volume beyond the
base volume. Just fill out the volumes sub form. Note the blue “Volume 1”
text which functions much like it does for the lab creation text.

Deploy Template:
Deploy template by selecting a template from the table and clicking the
“Deploy Selected Template” button.Fill out the form with appropriate data
for whatever Cloud Provider you wish to deploy with. Select “Deploy Lab”
button.

This may take a few minutes, and if staying on the same managed
templates page a notification will show stating the status of the deploy.
You can still trigger other actions while this processes, but once you
navigate to another page the toast notification won't trigger.

Delete Template:
Figure 4.2.4 shows the delete modal. It works by selecting the template
you want to delete, and selecting the “Delete Template” button. Once on
this page select the “Confirm Delete” button to remove the template.

Manage Deployment Page:

More Information:
To get more information about a deployed lab, select the lab and click the
“More Info” button. Note this is executing a chain of requests, so it may
take a minute to load. This will also display an error, when no deployment
is selected.

Ending Deployments:
To end a deployment select the lab, and click the “End Deployment”
button. Note this is executing a chain of requests, so it may take a minute
to load. This will also display an error, when no deployment is selected.
Unlike other areas, you should leave this open until the action is executed,
otherwise you may not be able to see the status of the end deployment
without refreshing.

Appendix II: Alternative / Other Initial Versions of Design

Our design has gone through many different iterations to try and account for our
requirements and use cases. Many of these designs we decided to modify or abandon
because of some technical issue, some functionality error, or just because it did not fit
what we needed. A list of some of our original designs along with some diagrams are
below.

● Our first design involved utilizing Docker and the container managers for each
cloud platform to create our lab environments. We initially were going to utilize
this for Docker’s simplicity and consistency, but found that the client’s needs
required a valid virtual machine utilizing native cloud services for networking and
management to allow for controlled environment management and machine
access, so we decided to not implement this.

● We initially were considering creating a platform that would deploy individual
virtual machines instead of labs to allow for greater control and allow for more
configuration options from the user, but found this to not fit a critical requirement
of allowing modular “bundles” to be deployed to each environment.

● One of our earlier designs implemented ESX to simulate an on premises
platform, but with the given resources and the time constraints, we could not
implement a valid ESX platform for development.

● One of our early designs also included utilizing an image repository that would
allow the user to create custom virtual machine images and select those for
deployments. We were also planning to have a translator for converting images
from one platform to another utilizing a flow similar to Figure 4.3.1

● Our original design seen in Figure 4.3.2 was focused on hosting our application
on AWS using serverless services. This would allow us to bundle the application
on the marketplace for general consumer use and easy installation, but after
attempting to secure funding or necessary resources, we found that we could not
afford to host this on AWS after several design iterations.

Appendix III: Other Considerations

While developing our design, we wanted to implement many other items. This includes
features such as a fully functionally login system with specified roles to control user
access to the application, a feature to have an image uploader and translator to allow a
user to customize and deploy custom images to each platform, and a feature to allow
the user to add multiple account configurations to the application to manage multiple

cloud accounts for the same platform with customization for individual users with
specific roles to have access to specific features of each account. It is important to note
that all these features are valid features that can be added in the future, but given the
time constraints, could not be done so during this semester.

Appendix IV: API Documentation

Route Description Parameters

DELETE /lab Destroy a lab within a cloud provider lab_id OR vm_name
platform

GET /lab Retrieve a lab within a cloud
provider

lab_id OR vm_name optional
platform

POST /lab Create a lab within a cloud provider platform
region
subnet_id
template_id
vm_name (Azure)

GET /deployed Provides a list of all deployed labs lab_id OR vm_name optional
platform

GET /helper Provides a list of cloud platform
objects

object

DELETE /configuration Removes a configuration parameter name

GET /configuration Provides a list of all configuration
settings

N/A

POST /configuration Creates a new configuration
parameter

name
value

DELETE /template Removes a lab template template_id

GET /template Retrieves a lab template N/A

POST /template Creates a lab template template (in JSON form via
body)

GET /test Dummy response to verify API is up N/A

