
Cloud Environment Manager
sdmay21-39@iastate.edu

Client:PwC
Advisor: Lofti Ben Othmane

Rishabh Bansal, Zane Seuser, Jet Jacobs, Adis Osmankic,Gavin Monroe

PROBLEM AND PROJECT STATEMENT

Currently, our sponsor provisions lab environments for capture the flag events within a variety of cloud providers and on-premise resources 
by hand. The problem with this is that it is super unscalable. They have no way to quickly create and manage a large amount of lab 
environments. There is also no way to easily make sure that all these environments are the same. Right now, they have to log in to each 
individual cloud provider (like AWS, Azure, GCP) and manually configure every single virtual environment individually.
By developing our project application, the Cloud Environment Manager, we are going to provide our sponsor with a clean and simple user 
interface that allows them to quickly and easily deploy lab environments to multiple different cloud providers. The application will also allow 
them to manage and destroy their existing lab environments once they are no longer needed.
In a nutshell, our whole project is to create a user friendly interface that can quickly and easily create and manage virtual machines in 
various cloud platforms.

DESIGN APPROACH:

DESIGN REQUIREMENTS ENGINEERING CONSTRAINTS
● We were given full control 
● No access to an ESX system
● No budget, so all examples have been made with free tiers of AWS, GCP, 

Azure
● Any operation we use must be compatible across all platforms

This project is designed for use by an organization that needs to deploy lab 
environments to different cloud platforms for a variety of different users. This project 
is focused on education and deploying capture the flag events to large groups of 
people for training. By using this product, organization admins will be able to deliver 
training resources to members of the organization quickly and easily. 

INTENDED USERS
TESTING

Functional Requirements:
○ A user should be able to view a list of existing lab environments
○ A user should be able to view all of the attributes of existing lab 

environments
○ A user should be able to provision lab environments within AWS, GCP, 

and Azure
○ We would be having a centralized platform. Due to which there could 

be one place to manage all the VM environments. 

Non-Functional Requirements:
○ The application should be available at all times
○ The application should properly handle errors behind-the-scenes and 

provide error messages / warnings to the user when necessary
○ The user interface should be visually appealing
○ The user interface should be easy to use and intuitive

OPERATIONAL 
ENVIRONMENT

This main application will be 
hosted within our provided server. 
The front-end application will be 
accessible from a web browser 
and the back-end API it interfaces 
with will be able to deploy lab 
environments to different cloud 
providers (AWS, Azure, GCP).

TECHNOLOGY 
USED

Design Summary:
We wanted our design to be easy to develop and efficient, so we 
decided upon a separately hosted front-end and back-end. Another 
thing that we thought was very important was to use the technology 
that made implementing our functionality easy and fast. Because of 
this, we chose to utilize existing frameworks to expedite the 
development of our UI and API. Doing this, we can also utilize all 
the libraries that exist for those frameworks.
Our Design Components:
● User Interface

○ React application for creating frontend user interface.
● API Services

○ Python Flask API for business logic and creating connections 
to all of our backends.

● Ansible
○ For Cloud Environment management interfacing for all the 

cloud providers.
● MongoDB

○ Data storage for lab templates and configuration parameters
● Cloud Infrastructure

○ Labs and Vrtiual machines within different cloud providers like 
AWS, GCP, and Azure.

Frontend Testing
Using React Jest for user platform 

testing making sure components and 
pages functioned as needed. This 
included popular packages that 
extended user clicking and scrolling to 
ensure functionality.

Acceptance Testing
By using Postman as a testing tool 

we can insure smooth integrations 
across all endpoints used from frontend 
to backend. Tests allows us to ensure 
that our API is working as expected, to 
establish low failure rate.

STANDARDS
● IEEE 14764-2006 - Standard for Software Engineering - Software Life Cycle 

Processes - Maintenance
● IEEE 29119-1:2013 - Software and Systems Engineering — Software Testing
● IEEE 15026-1:2019 - Systems and Software Assurance


